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Monday talks

Clifford-Fischer Theory Applied to G1 = 24·A8

Langson Kapata

Department of Mathematics, University of Zambia

Based on joint work with Chrisper Chileshe and Jamshid Moori.

In this talk, we demonstrate how to compute the character table of a non-split group extension
G1 = 24·A8 using a method known as Clifford-Fischer theory. The character tables of all the maximal
subgroups of the sporadic simple groups are known, except for some maximal subgroups of the
Monster M and Baby Monster B. Unfortunately, the character table of a non-split extension group
is not easy to compute since all irreducible characters of inertia factor groups are not extendable.
Nevertheless, a number of authors [1], [2], [3], have worked on non-split extensions for instance,
Ali [1], among others considered the projective representations and characters and showed how
the technique of coset analysis and Clifford-Fischer theory can be applied to non-split extensions
37·O7(3) and 37·O7(3):2, which are maximal subgroups of Fischer’s largest sporadic simple group
Fi′24 and its automorphism group Fi24 respectively. This is our motivation in this talk as we show
how to compute the character table of G1.

Reference

[1] F. Ali, Fischer-Clifford Theory for Split and Non-Split Group Extensions, PhD Thesis, Univer-
sity of Natal, Pietermaritzburg, 2001

[2] A.B.M. Basheer and J. Moori, Clifford-Fischer Theory Applied to Certain Groups Associated
with Symplectic, Unitary and Thompson Groups, PhD Thesis, University of Kwazulu-Natal,
Pietermaritzburg, 2012.

[3] T.T. Seretlo, Fischer-Clifford Matrices and Character Tables of Certain Groups Associated with
Simple Groups O+

8 (2), HS and Ly, PhD Thesis, University of Kwazulu-Natal, Pietermaritzburg,
2012.

Average number of zeros of characters of finite groups.

Yash Madanha
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University of Pretoria

Dedicated to the memory of Kay Magaard.

There has been some interest on how the average character degree affects the structure of a finite
group. We define, and denote by anz(G), the average number of zeros of characters of a finite group
G as the number of zeros in the character table of G divided by the number of irreducible characters
of G. We show that if anz(G) < 1, then the group G is solvable and also that if anz(G) < 1

2 , then
G is supersolvable. We characterise abelian groups by showing that anz(G) < 1

3 if and only if G is
abelian.

On some triply-even binary codes invariant under PSL2(p2)

Xavier Mbaale

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal and
Department of Mathematics, University of Zambia

Based on joint work with Bernardo Rodrigues.

Using an interplay between combinatorial designs and finite geometries, a geometric structure
known as a finite inversive plane is studied in connection with a symmetric 1-( p(p2+1)

2 , p2−1, p2−1)
design D invariant under the group PSL2(p2). The design D is defined by the primitive action of
the projective special linear groups PSL2(p2), where p is an odd prime, on the circles (points) of
the finite miquelian inversive planes. It is shown that D is quasi-symmetric with intersection num-
bers {2(p−1),2(p+1)}. Further, from the row span of the incidence matrix of D , we construct an
infinite family of triply-even binary codes and show that C is invariant under the group PΣL(2, p2).

Reference

[1] E. F. Assmus, Jr and J. D. Key. Designs and their Codes. Cambridge: Cambridge University Press,
1992. Cambridge Tracts in Mathematics, Vol. 103 (Second printing with corrections, 1993).

[2] K. Betsumiya and A. Munemasa. On triply even binary codes. J. Lond. Math. Soc, 86 (1) (2012) 1–16.

[3] O. H. King. The subgroup structure of finite classical groups in terms of geometric configurations .
In: B.S.Webb, ed. Survey in Combinatorics 2005, 29—56, London Math. Soc. Lecture Note Ser., 327,
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Transactions on Combinatorics, to appear.

On a Maximal Subgroup of The Orthogonal Group O+
8 (3)

David Musyoka
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Department of Mathematics, Kenyatta University
Based on joint work with Lydia Njuguna (Kenyatta University), Lucy Chikamai (Kibabii

University) and Abraham Prins (Nelson Mandela University-SA)

The orthogonal group O+
8 (3) of order 4952178914400 = 212.312.32.7.13 has 27 conjugacy classes

of maximal subgroups [2]. Among the maximal subgroups of O+
8 (3) are three non-conjugate but

isomorphic subgroups Ḡ1, Ḡ2 and Ḡ3 of the form 36:L4(3) order 4421589120 and index 1120 in
O+

8 (3). The aim of this study is to compute the Fischer-Clifford matrices and hence the character
table of Ḡ1, the first group of the three as they appear in ATLAS of finite groups [2]. For this purpose
we use the Fischer-Clifford matrices technique which is based on Clifford theory and was develo-
ped by Bernd Fischer [3]. This technique relies on the fact that every irreducible character of an
extension group Ḡ = N : G can be obtained by induction from the inertia groups of Ḡ. The method
of coset analysis which was developed and first used by Moori [4] has been used largely to deter-
mine the conjugacy classes of extensions of elementary abelian groups. The group 36:L4(3) which
we shall now denote by Ḡ is a split-extension of N = 36, the vector space of dimension 6 over GF(3)
by the projective special linear group G = PSL4(3) also denoted as L4(3). In this presentation, we
present our results on this study by briefly describing the action of L4(3) on N = 36, conjugacy
classes of the group Ḡ, identification of Inertia factor groups, computation of unique Fischer matri-
ces and fusion of Ḡ into O+

8 (3). Most of our computations are carried out using computer algebra
systems MAGMA [5] and GAP [1].

Reference

[1] The GAP Group, GAP Groups,Algorithms, and Programming, Version GAP 4.11.0 of 29-Feb-2020,
https://www.gap-system.org

[2] J. H. Conway, Atlas of finite groups: maximal subgroups and ordinary characters of simple groups,
Oxford University Press, 1985.

[3] B. Fischer, Clifford-Matrices, in: Representation Theory of Finite Groups and Finite Dimensional Al-
gebras, Springer, 1991, pp. 1-16.

[4] J. Moori, On the groups G+ and Ḡ of the forms 210 : M22 and 210 : M̄22, Journal PhD thesis, University
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On some binary codes of lenght 120 invariant under A9

Cedric Ndarinyo

Department of Mathematics, Kibabii University

Based on joint work with Lucy Chikamai.
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Let G be the alternating group A9. We determine all binary codes constructed from the primitive per-
mutation representation of G of degree 120. We investigate the properties of these codes especially
those of small dimension. We establish that there is no self-dual code of length 120 invariant un-
der A9. We also determined a strongly regular graph with parameters (256,135,70,72) and several
designs whose automorphism group is G.

On a GAP routine for projective characters of a finite group

Abraham Love Prins

Department of Mathematics and Applied Mathematics, Nelson Mandela University

It is a well-known fact that all the sets of irreducible projective characters IrrProj(G,αi), i=1,2, . . . ,m,
of a finite group G with factor sets αi can be obtained from the ordinary irreducible characters of
a so-called representation group R ∼= M(G).G of G, where M(G) denotes the Schur multiplier of
the group G and m the number of cohomology classes [αi] in M(G). Using this theory, a routine
written in the computational algebra system GAP is presented to compute the sets IrrProj(G,αi) for
a finite group G. In particular, this said GAP routine will be applied to the maximal subgroups of
the sporadic simple Mathieu group M22.

Linear codes of the Mathieu groups and their support designs

Amin Saeidi

University of Tehran
In Memory of Dr. Karim Ahmadidelir, 1964-2020

Based on joint work with Mohammad Darafsheh and Bernardo Rodrigues.

In this talk, using a representation theoretic method we obtain all binary linear codes that admit the
Mathieu group M11 as a primitive permutation automorphism group. We also construct some point-
and block primitive 1-designs from the supports of these codes, including a 3-(12,6,10) design and
a Steiner system S(9,9,12). We use the triangular graphs to compute the stabilizers of the codes
and define some new graphs to study the structure of the codes in general. We may generalize these
methods to other suitable families of finite simple groups and obtain similar results.

Reference

[1] E. F. Assmus, Jr and J. D. Key. Designs and their Codes. Cambridge: Cambridge University
Press, 1992. Cambridge Tracts in Mathematics, Vol. 103 (Second printing with corrections,
1993).

[2] W.H. Haemers, R. Peeters, J.M. van Rijckevorsel, Binary codes of strongly regular graphs,
Des. Codes Cryptogr. 17 (1999) 187–209.
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[3] W. Knapp and P. Schmid, Codes with prescribed permutation automorphism. J. Algebra 67
(2) (1980), 415–435.

Which groups can act on algebras of Monster type?

Sergey Shpectorov

School of Mathematics, University of Birmingham

Based on joint work with Clara Franchi and Mario Mainardis.

Axial algebras are a class of non-associative algebras closely related to groups. Much of recent
research in this area is focussed on the subclass of algebras of Monster type. The interest in this
particular type of axial algebras is due to the known examples, including the Jordan algebras for
classical and some exceptional groups, Matsuo algebras for 3-transposition groups, and the Griess
algebra and its subalgebras, corresponding to the Monster sporadic simple group M and various
subgroups of it. Recently a concept of a double axis and of a flip subalgebra were introduced leading
to a rich variety of new examples.
We will focus on the following question: what are the properties that are possessed by the groups

arising from axial algebras of Monster type? It is well known that the Monster M is a 6-transposition
group. A theorem of Sakuma, proved initially in the context of vertex operator algebras, gives an
explanation to this fact. More recently, Sakuma’s theorem has been transferred into the context of
axial algebras and broadly generalized. In particular, we have been able to completely classify the
generic case, that is, the algebras that exist over all fields. It turns out that the groups coming from
the generic algebras are groups of 3-transpositions and hence they are all known. This opens up the
possibility of a complete classification of generic algebras in terms of their groups.
In the lecture, after reviewing the basics of axial algebras, we will discuss these and other related

results and pose a few open problems.

Axial algebras for the sporadic simple group HS

Tendai M Mudziiri Shumba

University of Johannesburg

We present constructions of axial algebras for the Higman-Sims sporadic simple group via Norton
algebras. Fusion laws are presented as well as the extensions of these algebras by unit.
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Groups acting with fixity at most 4

Rebbeca Waldecker

Institute of Mathematics, Martin Luther University Halle-Wittenberg

In this talk we will see how the theory of Riemann surfaces leads to interesting and difficult ques-
tions about permutation groups and, ultimately, about finite simple groups. We will discuss the
motivation, methods, some results and open problems.

Generating graphs with clique number 3 and just coverable groups

Bettina Wilkens

Department of Mathematics, University of Namibia

The results presented in this talk originate from a question raised by Ekaterina Shul’man concer-
ning subgroup coverings of groups:
Given a covering of a group with proper subgroups taken from a set S and a finite n such that every
element of G is in all but at most n subgroups in S , find a bound of |S | in terms of n.
The -short- solution to this problem has led to a series of interconnected questions, two of which
will be discussed:
Let G be a finite-two generated group. The generating graph of G has as its vertices the elements
of G, an edge being placed between x and y if 〈x, y〉 = G. Questions on connectedness and clique
number of this graph have attracted much attention in recent years; we will present some results
towards a classification of groups whose generating graph has clique number three.
Finally, we move on to finite groups G that can be covered by proper subgroups, but just barely in
the sense that for every subgroup covering S of G there is an x ∈G with the property that x belongs
to exactly one subgroup in S ; we present various results towards a characterisation of the nilpotent
and solvable groups with this property.

Reference

[1] N. Blackburn, L. Héthelyi, Some further properties of Soft subgroups , Arch. Math. 69 (1997)
365 –371

[2] E. Shulman, Subadditive set-functions on semigroups, applications to group representations
and functional equations, J. Functional Analysis 263 (2012) 1468–1484
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Twisted group algebras

Wolfgang Willems

Otto-von-Guericke-Universität Magdeburg
Based on joint work with Javier de la Cruz.

There are some famous codes which do not occur as ideals in group algebras. For instance λ -
constacyclic codes, some Hamming codes or the ternary extended [12,6,6] Golay code. It turned
out that all of them are ideals in a twisted group algebra. I may explain what a twisted group algebra
is and explain how the above codes arise as ideals.

Designs from maximal subgroups and conjugacy classes of Ree groups

Seiran Zandi

University of KwaZulu-Natal
Based on joint work with Jamshid Moori, Amin Saeidi and Bernardo Rodrigues.

In this talk, our aim is to construct designs from the maximal subgroups and the conjugacy classes
of the family of small Ree group 2G2(q), where q is an odd power of 3. The method that we use
is one of two methods introduced by Key and Moori in [1, 2]. The second method introduced in
[2] and called Method 2 for short, outlines the construction of 1-designs which are not necessarily
symmetric. The construction of designs using Method 2 relies on a choice of a maximal subgroup
M of a finite simple group G and a conjugacy class in G of some element x ∈M.

Reference

[1] J.D. Key, J. Moori. Designs, codes and graphs from the Janko groups J1 and J2. J. Combin.
Math. Combin. Comput., 40 (2002), 143–159.

[2] J.D. Key, J. Moori. Designs from maximal subgroups and conjugacy classes of finite simple
groups. J. Combin. Math. Combin. Comput., 99 (2016), 41–60.
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